Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Study of an On-board Fuel Reformer and Hydrogen-Added EGR Combustion in a Gasoline Engine

2015-04-14
2015-01-0902
To improve the fuel economy via high EGR, combustion stability is enhanced through the addition of hydrogen, with its high flame-speed in air-fuel mixture. So, in order to realize on-board hydrogen production we developed a fuel reformer which produces hydrogen rich gas. One of the main issues of the reformer engine is the effects of reformate gas components on combustion performance. To clarify the effect of reformate gas contents on combustion stability, chemical kinetic simulations and single-cylinder engine test, in which hydrogen, CO, methane and simulated gas were added to intake air, were executed. And it is confirmed that hydrogen additive rate is dominant on high EGR combustion. The other issue to realize the fuel reformer was the catalyst deterioration. Catalyst reforming and exposure test were carried out to understand the influence of actual exhaust gas on the catalyst performance.
Technical Paper

1.2GPa Advanced High Strength Steel with High Formability

2014-04-01
2014-01-0991
To reduce the Body in White (BIW) mass, it is necessary to expand the application of Advanced High-Strength Steels (AHSS) to complex shaped parts. In order to apply AHSS to complex shaped parts with thinner gauge, high formability steel is required. However, higher strength steels tend to display lower elongations, compared with low/medium strength steels. Current AHSS are applied to limited parts for this reason. The new 1.2GPa material, with high formability, was developed to solve this issue. The mechanical property targets for the high elongation 1.2GPa material were achieved by precise metallurgical optimization. Many material aspects were studied, such as formability, weldabilty, impact strength, and delayed fracture. As the result of this development, 1.2GPa AHSS has been applied to a new vehicle launched in 2013.The application of this material was the 1st in the world, and achieved a 11kg mass reduction.
Technical Paper

Development of GF-5 0W-20 Fuel-Saving Engine Oil for DLC-Coated Valve Lifters

2014-04-01
2014-01-1478
A suitable GF-5 engine oil formulation is investigated to improve the fuel economy of gasoline engines with hydrogen-free DLC-coated valve lifters. Molybdenum dithocarbamate (MoDTC) is shown to be a suitable friction modifier for low viscosity grade engine oils like 0W-20. A suitable Ca salicylate detergent is also determined from several types examined for maximizing the friction reduction effects of MoDTC. The most suitable Ca salicylate has a chemical structure capable of forming a borophosphate glass film on metal surfaces, which is known to improve the effects of MoDTC. A high viscosity index Group III base oil (VI>140) is also effective in improving fuel efficiency. It is further clarified that the structural design of the polymethacrylate viscosity modifier is another important factor in reducing engine friction.
Technical Paper

Variable Characteristic Permanent Magnet Motor for Automobile Application

2014-04-01
2014-01-1869
This paper describes a variable magnetomotive force interior permanent magnet (IPM) machine for use as a traction motor on automobiles in order to reduce total energy consumption during duty cycles and cut costs by using Dy-free magnets. First, the principle of a variable magnetomotive force flux-intensifying IPM (VFI-IPM) machine is explained. A theoretical operating point analysis of the magnets using a simplified model with nonlinear B-H characteristics is presented and the results are confirmed by nonlinear finite element analysis. Four types of magnet layouts were investigated for the magnetic circuit design. It was found that a radial magnetization direction with a single magnet is suitable for the VFI-IPM machine. Magnetization controllability was investigated with respect to the magnet thickness, width and coercive force for the prototype design. The estimated variable motor speed and torque characteristics are presented.
Technical Paper

Study on Miniaturization of an Air-Cooled Inverter Integrated with Motor

2014-04-01
2014-01-1872
This paper reports about a trial for miniaturization of an air-cooled inverter integrated with motor, which is realized by reduction of the total volume of smoothing capacitor. An integrated system prototype was constructed with a disk-shaped inverter positioned at the rear end of the motor. We examined the possibility of using a ceramic capacitor, which features a higher heat-resistance temperature, lower internal resistance and higher capacity density than a film capacitor. At the same level of capacitance, the volume of a ceramic capacitor is less than one-half that of a film capacitor, enabling the size of the smoothing capacitor to be reduced to approximately one-fifth that of the currently used device. A suitable circuit configuration and physical layout of distributed smoothing capacitors and corresponding power device modules are proposed and demonstrated.
Technical Paper

Microfluidic Simulation of Diesel Exhaust Gas and Soot Oxidation in Diesel Particulate Filter

2013-03-25
2013-01-0009
Particulate matter (PM) including soot in diesel exhaust gas is a serious atmospheric pollutant, and stricter exhaust emission standards are being set in many countries. As one of the key technologies, a diesel particulate filter (DPF) for PM trap in the after-treatment of the exhaust gas has been developed. Typically, the inlet size of filter monolith is about 2 mm, and the thickness of the filter wall is only 0.2 mm, where soot particles are removed. It is impossible to observe the small-scale phenomena inside the filter, experimentally. Then, in the present study, we conducted microfluidic simulation with soot oxidation. Here, a real cordierite filter was used in the simulation. The inner structure of the filter was scanned by a 3D X-ray CT Computed Tomography) technique. The advantage is that it is non-intrusive system, and it has a high spatial resolution in the micrometer.
Journal Article

Low-Cost FC Stack Concept with Increased Power Density and Simplified Configuration Utilizing an Advanced MEA

2011-04-12
2011-01-1344
In 2006, Nissan began limited leasing of the X-TRAIL FCV equipped with their in-house developed Fuel Cell (FC) stack. Since then, the FC stack has been improved in cost, size, durability and cold start-up capability with the aim of promoting full-scale commercialization of FCVs. However, reduction of cost and size has remained a significant challenge because limited mass transport through the membrane electrode assembly (MEA) has made it difficult to increase the rated current density of the FC. Furthermore, it has been difficult to reduce the variety of FC stack components due to the complex stack configuration. In this study, improvements have been achieved mainly by adopting an advanced MEA to overcome these difficulties. First, the adoption of a new MEA and separators has improved mass transport through the MEA for increased rated current density. Second, an integrated molded frame (IMF) has been adopted as the MEA support.
Technical Paper

Development of High Response Motor and Inverter System for the Nissan LEAF Electric Vehicle

2011-04-12
2011-01-0350
This paper describes the motor and inverter system developed for the Nissan LEAF that has been specifically designed as a mass-produced electric vehicle. The system produces maximum torque of 280 Nm and maximum power of 80 kW. The motor achieves a small size, high power, and high efficiency as a result of adopting the following in-house technologies. The magnetic circuit design was optimized for an interior magnet synchronous motor to attain the maximum performance figures noted here. The material technologies of the rotor and the stator facilitate high efficiency and the production technology achieves high density winding. The cooling mechanism is optimally designed for a mass-produced electric vehicle. The inverter incorporates the following original technologies and application-specific parts to obtain cost reductions combined with reliability improvements. The power module has an original structure with the power devices mounted directly on the busbars.
Technical Paper

High Power Density Motor and Inverter for RWD Hybrid Vehicles

2011-04-12
2011-01-0351
This paper describes the motor and inverter of Nissan's newly developed parallel hybrid system for rear-wheel-drive hybrid vehicles. The new system incorporates a high-power lithium-ion battery and a one-motor-two-clutch powertrain to achieve both highly responsive acceleration and better fuel economy. As the main components of the hybrid system, both the motor and the inverter have been developed and are manufactured in house to attain high power density for providing responsive acceleration, a quiet EV drive mode and improved fuel economy. Because the motor is located between the engine and the transmission, it had to be shortened to stay within the length allowed for the powertrain. The rotary position sensor and clutch actuator are located inside the rotor to meet the size requirement. High-density winding of square-shaped wire and a small power distribution busbar also contribute to the compact configuration.
Technical Paper

Fundamental Analysis of Combustion Initiation Characteristics of Low Temperature Plasma Ignition for Internal Combustion Gasoline Engine

2011-04-12
2011-01-0660
In recent years, the study of volumetric ignition using high-speed (nanosecond) pulsed low temperature plasma for gasoline engines was reported by authors [ 1 ]. However, the fundamental analysis of ignition characteristics of the low temperature plasma ignition and the analysis of combustion initiation mechanism of the low temperature plasma ignition was not enough in the previous paper. In this study, a low temperature plasma igniter of a barrier discharge (silent discharge) model was developed for trial purpose. A fundamental analysis of ignition characteristics was carried out when the low temperature plasma ignition was applied as the ignition system for gasoline engine using single-cylinder. The difference between the ignition characteristics of the low temperature plasma and the thermal plasma of a conventional spark plug was investigated by comparing a combustion characteristic of both in various driving conditions.
Technical Paper

Crank-angle-resolved Measurements of Air-fuel Ratio, Temperature, and Liquid Fuel Droplet Scattering in a Direct-injection Gasoline Engine

2010-10-25
2010-01-2246
Simultaneous crank-angle-resolved measurements of gasoline vapor concentration, gas temperature, and liquid fuel droplet scattering were made with three-color infrared absorption in a direct-injection spark-ignition engine with premium gasoline. The infrared light was coupled into and out of the cylinder using fiber optics incorporated into a modified spark plug, allowing measurement at a location adjacent to the spark plug electrode. Two mid-infrared (mid-IR) laser wavelengths were simultaneously produced by difference-frequency-generation in periodically poled lithium niobate (PPLN) using one signal and two pump lasers operating in the near-infrared (near-IR). A portion of the near-IR signal laser residual provided a simultaneous third, non-resonant, wavelength for liquid droplet detection. This non-resonant signal was used to subtract the influence of droplet scattering from the resonant mid-IR signals to obtain vapor absorption signals in the presence of droplet extinction.
Journal Article

Dissimilar Joining of Aluminum Alloy and Steel by Resistance Spot Welding

2009-04-20
2009-01-0034
This study concerns a dissimilar materials joining technique for aluminum (Al) alloys and steel for the purpose of reducing the vehicle body weight. The tough oxide layer on the Al alloy surface and the ability to control the Fe-Al intermetallic compound (IMC) thickness are issues that have so far complicated the joining of Al alloys and steel. Removing the oxide layer has required a high heat input, resulting in the formation of a thick Fe-Al IMC layer at the joint interface, making it impossible to obtain satisfactory joint strength. To avoid that problem, we propose a unique joining concept that removes the oxide layer at low temperature by using the eutectic reaction between Al in the Al alloy and zinc (Zn) in the coating on galvanized steel (GI) and galvannealed steel (GA). This makes it possible to form a thin, uniform Fe-Al IMC layer at the joint interface. Welded joints of dissimilar materials require anticorrosion performance against electrochemical corrosion.
Technical Paper

A Lubrication Analysis of Multi Link VCR Engine Components using a Mixed Elasto-Hydrodynamic Lubrication Theory Model

2009-04-20
2009-01-1062
Research is under way on an engine system [1] that achieves a variable compression ratio using a multiple-link mechanism between the crankshaft and pistons for the dual purpose of improving fuel economy and power output. At present, there is no database that allows direct judgment of the feasibility of the specific sliding parts in this mechanism. In this paper, the feasibility was examined by making a comparison with the sliding characteristics and material properties of conventional engine parts, for which databases exist, and using evaluation parameters based on mixed elasto-hydrodynamic (EHD) lubrication calculations. In addition, the innovations made to the mixed EHD calculation method used in this study to facilitate calculations under various lubrication conditions are also explained, including the treatment of surface roughness, wear progress and stiffness around the bearings.
Journal Article

Novel Microsurface Machining Techniques for Improving the Traction Coefficient

2008-04-14
2008-01-0414
This study examined methods of machining a microsurface texture on the surface of the rolling elements of a toroidal continuously variable transmission (CVT) for improving the traction coefficient. The microsurface texture of the toroidal surfaces consists of tiny circumferential grooves (referred to here as micro grooves) and a mirror-like surface finish similar to the rolling surface of bearings. Hard turning with a cubic boron nitride (cBN) cutting tool, grinding with a cBN wheel and micro forming were applied to machine the micro grooves. The results made clear the practical potential of each method. A micro forming device was also developed for use in actual production. A mirror-like surface finish and micro crowning of the convex portions of the microsurface texture were simultaneously executed by superfinishing them with a fine-grained elastic superfinishing stone.
Technical Paper

Uniform Quenching Technology by Using Controlled High Pressure Gas after Low Pressure Carburizing

2008-04-14
2008-01-0365
To reduce quenching distortion, step gas quenching has been proposed in recent years, which refers to rapid gas cooling of steel from austenitizing temperature to a point above or below Ms temperature, where it is held for a specific period of time, followed by gas cooling. In this study, by using infrared thermography combined with conventional thermocouple, a new temperature monitoring and control system was developed to realize the step gas quenching process of a hypoid ring gear after low pressure carburizing. The test production results indicate that by using the new monitoring and control system, we can control the gas quenching process and the distortion of carburized gear treated by step gas quenching can be reduced significantly compared with standard gas quenching.
Technical Paper

Thermal Imaging Technology using a Thermoelectric Infrared Sensor

2008-04-14
2008-01-0912
This paper describes a low-cost 48 × 48 element thermal imaging camera intended for use in measuring the temperature in a car interior for advanced air conditioning systems. The compact camera measures 46 × 46 × 60 mm. It operates under a program stored in the central processing unit and can measure the interior temperature distribution with an accuracy of ±0.7°C in range from 0 to 40°C. The camera includes a thermoelectric focal plane array (FPA) housed in a low-cost vacuum-sealed package. The FPA is fabricated with the conventional IC manufacturing process and micromachining technology. The chip is 6.5 × 6.5 mm in size and achieves high sensitivity of 4,300 V/W, which is higher than the performance reported for any other thermopile. This high performance has been achieved by optimizing the sensor's thermal isolation structure and a precisely patterned Au-black absorber that attains high infrared absorptivity of more than 90%.
Technical Paper

Direct Heat Loss to Combustion Chamber Walls in a D.I. Diesel Engine-Development of Measurement Technique and Evaluation of Direct Heat Loss to Cylinder Liner Wall

2007-09-16
2007-24-0006
The purpose of this study is to clarify the state of heat loss to the cylinder liner of the tested engine of which piston and cylinder head were previously measured. The authors' group developed an original measurement technique of instantaneous surface temperature at the cylinder liner wall using thin-film thermocouples. The temperature was measured at 36 points in total. The instantaneous heat flux was calculated by heat transfer analysis using measurement results of the temperature at the wall. As a result, the heat loss ratio to all combustion chamber walls is evaluated except the intake and exhaust valves.
Technical Paper

A Study of an Analysis Method for Trace Substances in Vehicle Exhaust Gas

2007-04-16
2007-01-0306
A new method for measuring unregulated substances in the exhaust gas is being investigated to clarify the influence of the vehicles' exhaust emissions into the environment. This paper explains our work on developing an analysis method for detecting and quantifying trace substances in the exhaust gas. A new analysis method was examined that uses thermal desorption to analyze trace amounts of polycyclic aromatic hydrocarbons (PAHs) in vehicle exhaust gas. This technique is faster than conventional methods and does not require any preconditioning of the samples before analysis. While lead and chloromethane were detected in the exhaust gas samples, it was made clear that these substances did not originate in the engine system. Accordingly, the results of this study indicate that careful attention must be paid to the test environment and the presence of measurement interfering substances in exhaust samples when measuring trace constituents in the exhaust gas from low-emission vehicles.
Technical Paper

Analysis of Tooth Surface Fatigue Strength of Automotive Transmission Gears

2007-04-16
2007-01-0117
The life of automotive transmission gears today is often governed by pitting fatigue life. Being able to predict pitting fatigue life accurately is a crucial issue. Pitting fatigue life is substantially influenced by surface hardness and tooth surface geometry. For that reason, this study examined a new method of predicting pitting fatigue life that takes into account changes in these factors over time. This method makes it possible to predict the pitting fatigue life of automotive transmission gears under a wide range of evaluation conditions with markedly better accuracy than conventional methods used previously.
Technical Paper

Evaluations of Physical Fatigue during Long-term Driving with a New Driving Posture

2007-04-16
2007-01-0348
In a previous study, we developed and validated a new driving posture focused on biomechanical loads for physical fatigue reduction in static long-term sitting. In this study, the posture was evaluated in dynamic long-term driving condition by qualitative and quantitative measurements. The results showed physical fatigue of the new posture was halved in comparison with the one of the conventional posture in same car by subjective evaluations. Physiological indices had same tendency with subjective evaluations. From the results, we extracted seven physiological indices as good measures of physical fatigue while driving. Therefore, fatigue reduction of the new posture was qualitatively validated by physiological measurements.
X